一个色的导航资源精品在线观看|手机看片在线精品视频|伊人亚洲成人电影|亚洲欧美在线男女|无码无码在线观看五月精品视频在线|超碰日韩欧美在线|午夜精品蜜桃一区二区久久久|91欧美动态国产精品女主播|色欲色香天天天综合网在线观看免费|伊人春色在线伊人

江蘇警官學校面試題?

時間:2024-05-06 23:34 人氣:0 編輯:admin

一、江蘇警官學校面試題?

江蘇警官面試題有以下5點。

1.自我介紹一分鐘(面試中的第一個環(huán)節(jié)。一般情況下為中文,有些江蘇警官學院教授會要求考生用英文進行,建議做好準備,以防萬一。)

2.你報考江蘇警官學院的優(yōu)勢在哪里

3.為什么選擇報考江蘇警官學院?如果沒被江蘇警官學院錄取呢?

4.談談你對江蘇警官學院自主招生的看法

5.你的性格與興趣和你所選江蘇警官學院專業(yè)相匹配嗎?

二、面試題。你心目中的好學校。是大專學校面試題。你為什么報考xx職業(yè)技術學院。以及你對以后的計劃。謝?

心目中的好學校是適合自己的學校,人人向往的學校如清華、北大等國內一流名校,哈佛、麻省等世界名校,雖好,但不一定適合自己。

根據自己情況選定適合自己的學校就是最好的學校,這就是寧做兵頭不做將尾的意思。

職業(yè)技術學院就是大專,報考職業(yè)技術學院,畢業(yè)后有一技之長、多技之長,在社會上容易找到自己發(fā)揮作用的崗位,大專畢業(yè)不一定能有一技之長,即使有,也不如職業(yè)技術學院學得精。

三、學校公益組織面試題目

學校公益組織面試題目

大學生活是一個充滿無限可能和機會的時刻,許多學生都希望能夠參與到學校的公益組織中,為社會做出貢獻。然而,在加入公益組織之前,你可能需要經歷面試的過程。面試是一個關鍵的環(huán)節(jié),它能夠幫助招募人員了解你的能力、動機和價值觀。

為了幫助準備即將進行學校公益組織面試的同學們,我們整理了一些常見的面試題目,希望對你有所幫助。

1. 為什么你對公益組織感興趣?

這是一個常見的問題,面試官想要了解你加入公益組織的動機。你可以回答一些個人經歷,比如曾經參與過志愿者活動,或者對某個社會問題有濃厚的興趣。重要的是要展現出你對公益事業(yè)的熱情和責任感。

2. 你希望在公益組織中扮演什么角色?

在回答這個問題時,你可以根據自己的能力和興趣來描述你希望在公益組織中發(fā)揮的作用。比如,你可以談談自己在團隊合作方面的優(yōu)勢,或者你希望通過公益項目來提升自己的某些能力。同時,你也可以強調你愿意承擔責任,積極參與并促進公益組織的發(fā)展。

3. 你在過去的公益活動中遇到過什么挑戰(zhàn)?你是如何解決的?

在這個問題中,面試官想要了解你面對困難時的應對能力和解決問題的能力。你可以分享一次你參與公益活動過程中的挑戰(zhàn),并講述你是如何應對和解決這個問題的。重要的是要展現出你有適應變化和解決問題的能力。

4. 你如何平衡學業(yè)與公益活動之間的關系?

這個問題考察的是你在學術和公益活動之間能否找到平衡。你可以分享一些你過去如何兼顧學業(yè)和公益活動的經驗和方法。關鍵是要說明你有良好的時間管理能力,并且能夠合理安排你的學習和公益活動。

5. 你曾經參與的公益活動對你有什么影響?

這個問題用于了解你參與公益活動的收獲和感受。你可以談談你在公益活動中學到了什么技能、經驗以及如何發(fā)展你的價值觀。同時,你也可以強調參與公益活動對你個人成長的重要性。

6. 如果你成為我們組織的一員,你希望實現什么目標?

這個問題考察的是你對于自己在公益組織中的發(fā)展規(guī)劃和目標。你可以分享一些你希望在公益組織中取得的具體成就和貢獻。同時,你也可以表達出你希望通過公益工作來改變社會、影響更多人。

7. 你對某一社會問題的看法是什么?

在這個問題中,你可以談談你對某一社會問題的看法,并分享你對于解決這個問題的想法。重要的是要展現出你有對社會問題進行思考和獨立思考的能力。

8. 你希望在公益組織中學到什么?

這個問題用于了解你對于公益組織能夠為你提供什么樣的學習機會的期望。你可以談談你希望通過參與公益工作來提升自己的哪些能力,比如領導力、溝通能力、項目管理等。

9. 你有什么問題想要問我們的組織?

在面試的最后,面試官通常會問你是否有任何問題想要提問。你可以詢問一些關于組織的工作方式、項目規(guī)劃、成員發(fā)展等方面的問題。這顯示了你對公益組織的關注和主動性。

希望以上整理的面試題目能夠幫到你,祝你在公益組織的面試中取得成功!

四、mahout面試題?

之前看了Mahout官方示例 20news 的調用實現;于是想根據示例的流程實現其他例子。網上看到了一個關于天氣適不適合打羽毛球的例子。

訓練數據:

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

檢測數據:

sunny,hot,high,weak

結果:

Yes=》 0.007039

No=》 0.027418

于是使用Java代碼調用Mahout的工具類實現分類。

基本思想:

1. 構造分類數據。

2. 使用Mahout工具類進行訓練,得到訓練模型。

3。將要檢測數據轉換成vector數據。

4. 分類器對vector數據進行分類。

接下來貼下我的代碼實現=》

1. 構造分類數據:

在hdfs主要創(chuàng)建一個文件夾路徑 /zhoujainfeng/playtennis/input 并將分類文件夾 no 和 yes 的數據傳到hdfs上面。

數據文件格式,如D1文件內容: Sunny Hot High Weak

2. 使用Mahout工具類進行訓練,得到訓練模型。

3。將要檢測數據轉換成vector數據。

4. 分類器對vector數據進行分類。

這三步,代碼我就一次全貼出來;主要是兩個類 PlayTennis1 和 BayesCheckData = =》

package myTesting.bayes;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.util.ToolRunner;

import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;

import org.apache.mahout.text.SequenceFilesFromDirectory;

import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;

public class PlayTennis1 {

private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";

/*

* 測試代碼

*/

public static void main(String[] args) {

//將訓練數據轉換成 vector數據

makeTrainVector();

//產生訓練模型

makeModel(false);

//測試檢測數據

BayesCheckData.printResult();

}

public static void makeCheckVector(){

//將測試數據轉換成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"testinput";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數是,是否遞歸刪除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失?。?#34;);

System.exit(1);

}

//將序列化文件轉換成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數是,是否遞歸刪除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件轉換成向量失??!");

System.out.println(2);

}

}

public static void makeTrainVector(){

//將測試數據轉換成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"input";

String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數是,是否遞歸刪除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失??!");

System.exit(1);

}

//將序列化文件轉換成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數是,是否遞歸刪除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件轉換成向量失敗!");

System.out.println(2);

}

}

public static void makeModel(boolean completelyNB){

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";

String model = WORK_DIR+Path.SEPARATOR+"model";

String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";

Path in = new Path(input);

Path out = new Path(model);

Path label = new Path(labelindex);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數是,是否遞歸刪除的意思

fs.delete(out, true);

}

if(fs.exists(label)){

//boolean參數是,是否遞歸刪除的意思

fs.delete(label, true);

}

TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();

String[] params =null;

if(completelyNB){

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};

}else{

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};

}

ToolRunner.run(tnbj, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("生成訓練模型失??!");

System.exit(3);

}

}

}

package myTesting.bayes;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import org.apache.commons.lang.StringUtils;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.fs.PathFilter;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.mahout.classifier.naivebayes.BayesUtils;

import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;

import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;

import org.apache.mahout.common.Pair;

import org.apache.mahout.common.iterator.sequencefile.PathType;

import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;

import org.apache.mahout.math.RandomAccessSparseVector;

import org.apache.mahout.math.Vector;

import org.apache.mahout.math.Vector.Element;

import org.apache.mahout.vectorizer.TFIDF;

import com.google.common.collect.ConcurrentHashMultiset;

import com.google.common.collect.Multiset;

public class BayesCheckData {

private static StandardNaiveBayesClassifier classifier;

private static Map<String, Integer> dictionary;

private static Map<Integer, Long> documentFrequency;

private static Map<Integer, String> labelIndex;

public void init(Configuration conf){

try {

String modelPath = "/zhoujianfeng/playtennis/model";

String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";

String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";

String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";

dictionary = readDictionnary(conf, new Path(dictionaryPath));

documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));

labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));

NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);

classifier = new StandardNaiveBayesClassifier(model);

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("檢測數據構造成vectors初始化時報錯。。。。");

System.exit(4);

}

}

/**

* 加載字典文件,Key: TermValue; Value:TermID

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {

Map<String, Integer> dictionnary = new HashMap<String, Integer>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

String name = path.getName();

return name.startsWith("dictionary.file");

}

};

for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {

dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());

}

return dictionnary;

}

/**

* 加載df-count目錄下TermDoc頻率文件,Key: TermID; Value:DocFreq

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {

Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

return path.getName().startsWith("part-r");

}

};

for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {

documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());

}

return documentFrequency;

}

public static String getCheckResult(){

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String classify = "NaN";

BayesCheckData cdv = new BayesCheckData();

cdv.init(conf);

System.out.println("init done...............");

Vector vector = new RandomAccessSparseVector(10000);

TFIDF tfidf = new TFIDF();

//sunny,hot,high,weak

Multiset<String> words = ConcurrentHashMultiset.create();

words.add("sunny",1);

words.add("hot",1);

words.add("high",1);

words.add("weak",1);

int documentCount = documentFrequency.get(-1).intValue(); // key=-1時表示總文檔數

for (Multiset.Entry<String> entry : words.entrySet()) {

String word = entry.getElement();

int count = entry.getCount();

Integer wordId = dictionary.get(word); // 需要從dictionary.file-0文件(tf-vector)下得到wordID,

if (StringUtils.isEmpty(wordId.toString())){

continue;

}

if (documentFrequency.get(wordId) == null){

continue;

}

Long freq = documentFrequency.get(wordId);

double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);

vector.setQuick(wordId, tfIdfValue);

}

// 利用貝葉斯算法開始分類,并提取得分最好的分類label

Vector resultVector = classifier.classifyFull(vector);

double bestScore = -Double.MAX_VALUE;

int bestCategoryId = -1;

for(Element element: resultVector.all()) {

int categoryId = element.index();

double score = element.get();

System.out.println("categoryId:"+categoryId+" score:"+score);

if (score > bestScore) {

bestScore = score;

bestCategoryId = categoryId;

}

}

classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";

return classify;

}

public static void printResult(){

System.out.println("檢測所屬類別是:"+getCheckResult());

}

}

五、webgis面試題?

1. 請介紹一下WebGIS的概念和作用,以及在實際應用中的優(yōu)勢和挑戰(zhàn)。

WebGIS是一種基于Web技術的地理信息系統,通過將地理數據和功能以可視化的方式呈現在Web瀏覽器中,實現地理空間數據的共享和分析。它可以用于地圖瀏覽、空間查詢、地理分析等多種應用場景。WebGIS的優(yōu)勢包括易于訪問、跨平臺、實時更新、可定制性強等,但也面臨著數據安全性、性能優(yōu)化、用戶體驗等挑戰(zhàn)。

2. 請談談您在WebGIS開發(fā)方面的經驗和技能。

我在WebGIS開發(fā)方面有豐富的經驗和技能。我熟悉常用的WebGIS開發(fā)框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能夠使用HTML、CSS和JavaScript等前端技術進行地圖展示和交互設計,并能夠使用后端技術如Python、Java等進行地理數據處理和分析。我還具備數據庫管理和地理空間數據建模的能力,能夠設計和優(yōu)化WebGIS系統的架構。

3. 請描述一下您在以往項目中使用WebGIS解決的具體問題和取得的成果。

在以往的項目中,我使用WebGIS解決了許多具體問題并取得了顯著的成果。例如,在一次城市規(guī)劃項目中,我開發(fā)了一個基于WebGIS的交通流量分析系統,幫助規(guī)劃師們評估不同交通方案的效果。另外,在一次環(huán)境監(jiān)測項目中,我使用WebGIS技術實現了實時的空氣質量監(jiān)測和預警系統,提供了準確的空氣質量數據和可視化的分析結果,幫助政府和公眾做出相應的決策。

4. 請談談您對WebGIS未來發(fā)展的看法和期望。

我認為WebGIS在未來會繼續(xù)發(fā)展壯大。隨著云計算、大數據和人工智能等技術的不斷進步,WebGIS將能夠處理更大規(guī)模的地理數據、提供更豐富的地理分析功能,并與其他領域的技術進行深度融合。我期望未來的WebGIS能夠更加智能化、個性化,為用戶提供更好的地理信息服務,助力各行各業(yè)的決策和發(fā)展。

六、freertos面試題?

這塊您需要了解下stm32等單片機的基本編程和簡單的硬件設計,最好能夠了解模電和數電相關的知識更好,還有能夠會做操作系統,簡單的有ucos,freeRTOS等等。最好能夠使用PCB畫圖軟件以及keil4等軟件。希望對您能夠有用。

七、paas面試題?

1.負責區(qū)域大客戶/行業(yè)客戶管理系統銷售拓展工作,并完成銷售流程;

2.維護關鍵客戶關系,與客戶決策者保持良好的溝通;

3.管理并帶領團隊完成完成年度銷售任務。

八、面試題類型?

你好,面試題類型有很多,以下是一些常見的類型:

1. 技術面試題:考察候選人技術能力和經驗。

2. 行為面試題:考察候選人在過去的工作或生活中的行為表現,以預測其未來的表現。

3. 情境面試題:考察候選人在未知情境下的決策能力和解決問題的能力。

4. 案例面試題:考察候選人解決實際問題的能力,模擬真實工作場景。

5. 邏輯推理題:考察候選人的邏輯思維能力和分析能力。

6. 開放性面試題:考察候選人的個性、價值觀以及溝通能力。

7. 挑戰(zhàn)性面試題:考察候選人的應變能力和創(chuàng)造力,通常是一些非常具有挑戰(zhàn)性的問題。

九、cocoscreator面試題?

需要具體分析 因為cocoscreator是一款游戲引擎,面試時的問題會涉及到不同的方面,如開發(fā)經驗、游戲設計、圖形學等等,具體要求也會因公司或崗位而異,所以需要根據實際情況進行具體分析。 如果是針對開發(fā)經驗的問題,可能會考察候選人是否熟悉cocoscreator常用API,是否能夠獨立開發(fā)小型游戲等等;如果是針對游戲設計的問題,則需要考察候選人對游戲玩法、關卡設計等等方面的理解和能力。因此,需要具體分析才能得出準確的回答。

十、mycat面試題?

以下是一些可能出現在MyCat面試中的問題:

1. 什么是MyCat?MyCat是一個開源的分布式數據庫中間件,它可以將多個MySQL數據庫組合成一個邏輯上的數據庫集群,提供高可用性、高性能、易擴展等特性。

2. MyCat的優(yōu)勢是什么?MyCat具有以下優(yōu)勢:支持讀寫分離、支持分庫分表、支持自動切換故障節(jié)點、支持SQL解析和路由、支持數據分片等。

3. MyCat的架構是怎樣的?MyCat的架構包括三個層次:客戶端層、中間件層和數據存儲層??蛻舳藢迂撠熃邮蘸吞幚砜蛻舳苏埱螅虚g件層負責SQL解析和路由,數據存儲層負責實際的數據存儲和查詢。

4. MyCat支持哪些數據庫?MyCat目前支持MySQL和MariaDB數據庫。

5. MyCat如何實現讀寫分離?MyCat通過將讀請求和寫請求分別路由到不同的MySQL節(jié)點上實現讀寫分離。讀請求可以路由到多個只讀節(jié)點上,從而提高查詢性能。

6. MyCat如何實現分庫分表?MyCat通過對SQL進行解析和路由,將數據按照一定規(guī)則劃分到不同的數據庫或表中,從而實現分庫分表。

7. MyCat如何保證數據一致性?MyCat通過在多個MySQL節(jié)點之間同步數據,保證數據的一致性。同時,MyCat還支持自動切換故障節(jié)點,從而保證系統的高可用性。

8. MyCat的部署方式有哪些?MyCat可以部署在單機上,也可以部署在多臺服務器上實現分布式部署。

相關資訊
熱門頻道

Copyright © 2024 招聘街 滇ICP備2024020316號-38