一个色的导航资源精品在线观看|手机看片在线精品视频|伊人亚洲成人电影|亚洲欧美在线男女|无码无码在线观看五月精品视频在线|超碰日韩欧美在线|午夜精品蜜桃一区二区久久久|91欧美动态国产精品女主播|色欲色香天天天综合网在线观看免费|伊人春色在线伊人

互相推諉的意思?

時間:2025-02-01 00:08 人氣:0 編輯:招聘街

一、互相推諉的意思?

互相推諉_成語解釋【拼音】:hù xiāng tuī wěi【釋義】:諉:也作“委”,推辭;推諉:把責任推給別人。彼此之間互相推托,誰也不愿承擔責任?!境鎏帯浚好鳌だ钯棥斗贂ひ蛴浲隆罚骸吧踔粱ハ嗤仆校詾槟苊髡??!薄纠洹浚罕舜恕詶壷皇?,反遺之以與金人用。 ★《新刊大宋宣和遺事》利集

二、互相推諉互推責任的成語?

互相推諉hù xiāng tuī wěi【解釋】諉:也作“委”,推辭;推諉:把責任推給別人。彼此之間互相推托,誰也不愿承擔責任?!境鎏帯棵鳌だ钯棥斗贂ひ蛴浲隆罚骸吧踔粱ハ嗤仆?,以為能明哲?!薄窘Y構】偏正式成語【用法】作謂語、賓語;指不負責任【近義詞】互相推托【例句】彼此~,皆棄之不收,反遺之以與金人用。(《新刊大宋宣和遺事》利集)

三、互相推諉三字俗語?

踢皮球。

比喻互相推諉,把應該解決的事情推給別人。 “踢皮球”常用來形容政府職能部門職責不清,相互推諉,辦事效率低下?!疤咂で颉笨捎脕肀扔鳌跋嗷ネ普啞保邔儆诒扔麝P系。,多用貶義。

運籌關系學中也稱為一種策略?!疤咂で颉辈呗允且环N形象的比喻,即針對對方的要求,己方不便拒絕,便借各種客觀理由,左推右諉,把對方的"皮球"踢來踢去,不當一回事,對方在萬般無奈的情況下,只得妥協(xié)讓步的一種談判策略。

踢皮球策略的應用。踢皮球策略的使用有一定的原因、原則和方法。若遇到談判形勢對己方不利而想中止談判以達到出爾反爾的目的,或想達到降低對方條件、挽回損失、反敗為勝的目的,或想達到降低對方期望和程度而使之自動讓步等,都可使用該策略。只不過"踢皮球"策略往往是在談判接近尾聲時或即將簽字時才運用。其手法是轉移矛盾,假借上司或委托人等第三者之手去達到各種目的??梢赃_到意想不到的效果。

四、互相推諉工作責任的古代例子?

三個和尚沒水喝的故事大家都十分熟悉,而得到的最多的結論是缺乏團結力量,互相推卸責任和義務。其實。從這個小故事,我們也可以領悟到許多道理。

1.為什么“一個和尚挑水喝,兩個和尚抬水喝,三個和尚沒水喝?!保?/p>

原因很簡單。只有一個和尚時,由于生存的需要,沒有逃避的可能性,只有自己去挑水。同樣的道理,當你讓某個人全權負責某項事情,他沒有絲毫推卸的余地,往往及時甚至提前完成任務,圓滿解決問題。

五、互相推諉扯皮根源及解決辦法?

1.

企業(yè)內(nèi)部的扯皮,多是由于職責界定不清所致,所以可以通過補充、完善工作職責和崗位要求等等方式進行解決。明確了每個人的職責分工,分級負責,誰主管、誰負責,讓責權清晰明了,從而減少直至杜絕推諉和扯皮的現(xiàn)象。

2.

對于出現(xiàn)一些新情況、新問題或突發(fā)事件,規(guī)章制度和崗位職責上沒有相關責任人的但又需要緊急處理的,由發(fā)現(xiàn)新情況、新問題和突發(fā)事件的公司員工首先向直屬領導匯報。

六、mahout面試題?

之前看了Mahout官方示例 20news 的調(diào)用實現(xiàn);于是想根據(jù)示例的流程實現(xiàn)其他例子。網(wǎng)上看到了一個關于天氣適不適合打羽毛球的例子。

訓練數(shù)據(jù):

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

檢測數(shù)據(jù):

sunny,hot,high,weak

結果:

Yes=》 0.007039

No=》 0.027418

于是使用Java代碼調(diào)用Mahout的工具類實現(xiàn)分類。

基本思想:

1. 構造分類數(shù)據(jù)。

2. 使用Mahout工具類進行訓練,得到訓練模型。

3。將要檢測數(shù)據(jù)轉換成vector數(shù)據(jù)。

4. 分類器對vector數(shù)據(jù)進行分類。

接下來貼下我的代碼實現(xiàn)=》

1. 構造分類數(shù)據(jù):

在hdfs主要創(chuàng)建一個文件夾路徑 /zhoujainfeng/playtennis/input 并將分類文件夾 no 和 yes 的數(shù)據(jù)傳到hdfs上面。

數(shù)據(jù)文件格式,如D1文件內(nèi)容: Sunny Hot High Weak

2. 使用Mahout工具類進行訓練,得到訓練模型。

3。將要檢測數(shù)據(jù)轉換成vector數(shù)據(jù)。

4. 分類器對vector數(shù)據(jù)進行分類。

這三步,代碼我就一次全貼出來;主要是兩個類 PlayTennis1 和 BayesCheckData = =》

package myTesting.bayes;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.util.ToolRunner;

import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;

import org.apache.mahout.text.SequenceFilesFromDirectory;

import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;

public class PlayTennis1 {

private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";

/*

* 測試代碼

*/

public static void main(String[] args) {

//將訓練數(shù)據(jù)轉換成 vector數(shù)據(jù)

makeTrainVector();

//產(chǎn)生訓練模型

makeModel(false);

//測試檢測數(shù)據(jù)

BayesCheckData.printResult();

}

public static void makeCheckVector(){

//將測試數(shù)據(jù)轉換成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"testinput";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失??!");

System.exit(1);

}

//將序列化文件轉換成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件轉換成向量失敗!");

System.out.println(2);

}

}

public static void makeTrainVector(){

//將測試數(shù)據(jù)轉換成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"input";

String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失??!");

System.exit(1);

}

//將序列化文件轉換成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件轉換成向量失??!");

System.out.println(2);

}

}

public static void makeModel(boolean completelyNB){

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";

String model = WORK_DIR+Path.SEPARATOR+"model";

String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";

Path in = new Path(input);

Path out = new Path(model);

Path label = new Path(labelindex);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(out, true);

}

if(fs.exists(label)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(label, true);

}

TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();

String[] params =null;

if(completelyNB){

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};

}else{

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};

}

ToolRunner.run(tnbj, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("生成訓練模型失敗!");

System.exit(3);

}

}

}

package myTesting.bayes;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import org.apache.commons.lang.StringUtils;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.fs.PathFilter;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.mahout.classifier.naivebayes.BayesUtils;

import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;

import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;

import org.apache.mahout.common.Pair;

import org.apache.mahout.common.iterator.sequencefile.PathType;

import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;

import org.apache.mahout.math.RandomAccessSparseVector;

import org.apache.mahout.math.Vector;

import org.apache.mahout.math.Vector.Element;

import org.apache.mahout.vectorizer.TFIDF;

import com.google.common.collect.ConcurrentHashMultiset;

import com.google.common.collect.Multiset;

public class BayesCheckData {

private static StandardNaiveBayesClassifier classifier;

private static Map<String, Integer> dictionary;

private static Map<Integer, Long> documentFrequency;

private static Map<Integer, String> labelIndex;

public void init(Configuration conf){

try {

String modelPath = "/zhoujianfeng/playtennis/model";

String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";

String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";

String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";

dictionary = readDictionnary(conf, new Path(dictionaryPath));

documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));

labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));

NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);

classifier = new StandardNaiveBayesClassifier(model);

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("檢測數(shù)據(jù)構造成vectors初始化時報錯。。。。");

System.exit(4);

}

}

/**

* 加載字典文件,Key: TermValue; Value:TermID

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {

Map<String, Integer> dictionnary = new HashMap<String, Integer>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

String name = path.getName();

return name.startsWith("dictionary.file");

}

};

for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {

dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());

}

return dictionnary;

}

/**

* 加載df-count目錄下TermDoc頻率文件,Key: TermID; Value:DocFreq

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {

Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

return path.getName().startsWith("part-r");

}

};

for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {

documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());

}

return documentFrequency;

}

public static String getCheckResult(){

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String classify = "NaN";

BayesCheckData cdv = new BayesCheckData();

cdv.init(conf);

System.out.println("init done...............");

Vector vector = new RandomAccessSparseVector(10000);

TFIDF tfidf = new TFIDF();

//sunny,hot,high,weak

Multiset<String> words = ConcurrentHashMultiset.create();

words.add("sunny",1);

words.add("hot",1);

words.add("high",1);

words.add("weak",1);

int documentCount = documentFrequency.get(-1).intValue(); // key=-1時表示總文檔數(shù)

for (Multiset.Entry<String> entry : words.entrySet()) {

String word = entry.getElement();

int count = entry.getCount();

Integer wordId = dictionary.get(word); // 需要從dictionary.file-0文件(tf-vector)下得到wordID,

if (StringUtils.isEmpty(wordId.toString())){

continue;

}

if (documentFrequency.get(wordId) == null){

continue;

}

Long freq = documentFrequency.get(wordId);

double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);

vector.setQuick(wordId, tfIdfValue);

}

// 利用貝葉斯算法開始分類,并提取得分最好的分類label

Vector resultVector = classifier.classifyFull(vector);

double bestScore = -Double.MAX_VALUE;

int bestCategoryId = -1;

for(Element element: resultVector.all()) {

int categoryId = element.index();

double score = element.get();

System.out.println("categoryId:"+categoryId+" score:"+score);

if (score > bestScore) {

bestScore = score;

bestCategoryId = categoryId;

}

}

classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";

return classify;

}

public static void printResult(){

System.out.println("檢測所屬類別是:"+getCheckResult());

}

}

七、webgis面試題?

1. 請介紹一下WebGIS的概念和作用,以及在實際應用中的優(yōu)勢和挑戰(zhàn)。

WebGIS是一種基于Web技術的地理信息系統(tǒng),通過將地理數(shù)據(jù)和功能以可視化的方式呈現(xiàn)在Web瀏覽器中,實現(xiàn)地理空間數(shù)據(jù)的共享和分析。它可以用于地圖瀏覽、空間查詢、地理分析等多種應用場景。WebGIS的優(yōu)勢包括易于訪問、跨平臺、實時更新、可定制性強等,但也面臨著數(shù)據(jù)安全性、性能優(yōu)化、用戶體驗等挑戰(zhàn)。

2. 請談談您在WebGIS開發(fā)方面的經(jīng)驗和技能。

我在WebGIS開發(fā)方面有豐富的經(jīng)驗和技能。我熟悉常用的WebGIS開發(fā)框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能夠使用HTML、CSS和JavaScript等前端技術進行地圖展示和交互設計,并能夠使用后端技術如Python、Java等進行地理數(shù)據(jù)處理和分析。我還具備數(shù)據(jù)庫管理和地理空間數(shù)據(jù)建模的能力,能夠設計和優(yōu)化WebGIS系統(tǒng)的架構。

3. 請描述一下您在以往項目中使用WebGIS解決的具體問題和取得的成果。

在以往的項目中,我使用WebGIS解決了許多具體問題并取得了顯著的成果。例如,在一次城市規(guī)劃項目中,我開發(fā)了一個基于WebGIS的交通流量分析系統(tǒng),幫助規(guī)劃師們評估不同交通方案的效果。另外,在一次環(huán)境監(jiān)測項目中,我使用WebGIS技術實現(xiàn)了實時的空氣質(zhì)量監(jiān)測和預警系統(tǒng),提供了準確的空氣質(zhì)量數(shù)據(jù)和可視化的分析結果,幫助政府和公眾做出相應的決策。

4. 請談談您對WebGIS未來發(fā)展的看法和期望。

我認為WebGIS在未來會繼續(xù)發(fā)展壯大。隨著云計算、大數(shù)據(jù)和人工智能等技術的不斷進步,WebGIS將能夠處理更大規(guī)模的地理數(shù)據(jù)、提供更豐富的地理分析功能,并與其他領域的技術進行深度融合。我期望未來的WebGIS能夠更加智能化、個性化,為用戶提供更好的地理信息服務,助力各行各業(yè)的決策和發(fā)展。

八、freertos面試題?

這塊您需要了解下stm32等單片機的基本編程和簡單的硬件設計,最好能夠了解模電和數(shù)電相關的知識更好,還有能夠會做操作系統(tǒng),簡單的有ucos,freeRTOS等等。最好能夠使用PCB畫圖軟件以及keil4等軟件。希望對您能夠有用。

九、paas面試題?

1.負責區(qū)域大客戶/行業(yè)客戶管理系統(tǒng)銷售拓展工作,并完成銷售流程;

2.維護關鍵客戶關系,與客戶決策者保持良好的溝通;

3.管理并帶領團隊完成完成年度銷售任務。

十、面試題類型?

你好,面試題類型有很多,以下是一些常見的類型:

1. 技術面試題:考察候選人技術能力和經(jīng)驗。

2. 行為面試題:考察候選人在過去的工作或生活中的行為表現(xiàn),以預測其未來的表現(xiàn)。

3. 情境面試題:考察候選人在未知情境下的決策能力和解決問題的能力。

4. 案例面試題:考察候選人解決實際問題的能力,模擬真實工作場景。

5. 邏輯推理題:考察候選人的邏輯思維能力和分析能力。

6. 開放性面試題:考察候選人的個性、價值觀以及溝通能力。

7. 挑戰(zhàn)性面試題:考察候選人的應變能力和創(chuàng)造力,通常是一些非常具有挑戰(zhàn)性的問題。

相關資訊
熱門頻道

Copyright © 2024 招聘街 滇ICP備2024020316號-38