請你自我介紹一下你自己?
回答提示:一般人回答這個問題過于平常,只說姓名、年齡、愛好、工作經(jīng)驗,這些在簡歷上都有。其實,單位最希望知道的是求職者能否勝任工作,包括:最強的技能、最深入研究的知識領域、個性中最積極的部分、做過的最成功的事,主要的成就等,這些都可以和學習無關,也可以和學習有關,但要突出積極的個性和做事的能力,說得合情合理單位才會相信。單位很重視一個人的禮貌,求職者要尊重面試考官,在回答每個問題之后都說一句 “謝謝”,單位喜歡有禮貌的求職者。
2、你覺得你個性上最大的優(yōu)點是什么?
回答提示:沉著冷靜、條理清楚、立場堅定、頑強向上、樂于助人和關心他人、適應能力和幽默感、樂觀和友愛。我在XX經(jīng)過一到兩年的培訓及項目實戰(zhàn),加上實習工作,使我適合這份工作。
3、說說你最大的缺點?
回答提示:這個問題單位問的概率很大,通常不希望聽到直接回答的缺點是什么等,如果求職者說自己小心眼、愛忌妒人、非常懶、脾氣大、工作效率低,單位肯定不會錄用你。絕對不要自作聰明地回答“我最大的缺點是過于追求完美”,有的人以為這樣回答會顯得自己比較出色,但事實上,他已經(jīng)岌岌可危了。單位喜歡求職者從自己的優(yōu)點說起,中間加一些小缺點,最后再把問題轉回到優(yōu)點上,突出優(yōu)點的部分,單位喜歡聰明的求職者。
4、你對加班的看法?
回答提示:實際上好多單位會問這個問題,并不證明一定要加班,只是想測試你是否愿意為公司奉獻。
回答樣本:如果是工作需要我會義不容辭加班,我現(xiàn)在單身,沒有任何家庭負擔,可以全身心的投入工作。但同時,我也會提高工作效率,減少不必要的加班。
5、你對薪資的要求?
回答提示:如果你對薪酬的要求太低,那顯然貶低自己的能力;如果你對薪酬的要求太高,那又會顯得你分量過重,公司受用不起。一些雇主通常都事先對求聘的職位定下開支預算,因而他們第一次提出的價錢往往是他們所能給予的最高價錢,他們問你只不過想證實一下這筆錢是否足以引起你對該工作的興趣。
是比較難懂一種題型,也是考核考生素質比較全面的題型,一直是事業(yè)單位、??嫉目荚囶}型。在考官評分考核表中,對于綜合分析題是這樣定義的:對事物能從宏觀方面進行總體考慮;對事物能從微觀方面對其各個組成部分予以考慮;能注意整體和部分之間的相互聯(lián)系及各部分之間的有機協(xié)調組和。
難。
事業(yè)編綜合里的面試通常是采取結構畫面式的形式。結構化面試題型有綜合分析,應急應變,組織協(xié)調,人際關系等。這些題型是比較難的。
公務員綜合分析類面試題是公務員考試中的一個重要環(huán)節(jié),通過對候選人的綜合能力和分析能力進行考察,評估其是否適合擔任公務員職位。本文將為您提供一些常見的公務員綜合分析類面試題,幫助您更好地準備面試。
當前我國經(jīng)濟發(fā)展的形勢可以用“穩(wěn)中向好”來形容。經(jīng)過多年的快速增長,我國經(jīng)濟已進入了高質量發(fā)展階段,并實現(xiàn)了由高速增長向高質量發(fā)展的轉變。目前,我國經(jīng)濟保持了相對穩(wěn)定的增長速度,經(jīng)濟結構不斷優(yōu)化,消費升級提速,創(chuàng)新驅動發(fā)展成效顯著。然而,我們也要看到,我國面臨著一些挑戰(zhàn),如經(jīng)濟增長放緩、結構調整難度增加、外部環(huán)境不確定性等,需要通過深化改革、擴大開放等措施來應對。
當前我國教育發(fā)展取得了巨大成就,教育體制不斷完善,教育質量不斷提高。我國教育資源的普及程度不斷提高,教育公平意識日益增強,教育公共服務水平穩(wěn)步提升。我們也要看到,我國教育發(fā)展仍面臨一些問題和挑戰(zhàn),如教育資源分配不平衡、高等教育質量和就業(yè)問題等。因此,我們需要繼續(xù)加大教育改革力度,提高教育質量和公平性,培養(yǎng)更多高素質的人才。
當前我國社會保障體系改革取得了明顯進展,社會保障水平不斷提高。我國已建立起覆蓋全民、全面、多層次的社會保障體系,包括養(yǎng)老保險、醫(yī)療保險、失業(yè)保險、工傷保險和生育保險等。我國社會保障體系的改革還存在一些問題,如養(yǎng)老保險基金缺口問題、分級診療難題等。要進一步完善社會保障體系,提高保障水平,保障人民群眾的基本生活。
當前我國環(huán)境保護面臨嚴峻挑戰(zhàn)。隨著經(jīng)濟的快速發(fā)展和城市化進程的加快,我國環(huán)境污染問題日益嚴重。大氣污染、水污染、土壤污染等問題嚴重影響了人民群眾的生活質量和健康,也威脅著可持續(xù)發(fā)展。因此,我們需要采取更加有力的措施來加強環(huán)境保護,減少污染排放,促進經(jīng)濟與環(huán)境的協(xié)調發(fā)展。
當前我國科技創(chuàng)新取得了長足發(fā)展,科技實力顯著提升。我國在高鐵、電子商務、人工智能、新能源等領域取得了重大突破和創(chuàng)新成果,不斷提升自主創(chuàng)新能力。我國科技創(chuàng)新仍面臨一些問題,如科研成果轉化難題、人才培養(yǎng)問題等。要進一步加強科技創(chuàng)新,加大創(chuàng)新投入,提高科技創(chuàng)新能力,推動經(jīng)濟高質量發(fā)展。
公務員綜合分析類面試題是公務員招錄考試的重要環(huán)節(jié),通過對候選人的綜合能力和分析能力進行考察,來評估其是否適合擔任公務員職位。通過分析當前我國經(jīng)濟、教育、社會保障、環(huán)境保護和科技創(chuàng)新的現(xiàn)狀,我們可以更好地了解我國的發(fā)展情況和面臨的挑戰(zhàn),在工作中有針對性地提出解決方案,為國家的發(fā)展貢獻自己的力量。
之前看了Mahout官方示例 20news 的調用實現(xiàn);于是想根據(jù)示例的流程實現(xiàn)其他例子。網(wǎng)上看到了一個關于天氣適不適合打羽毛球的例子。
訓練數(shù)據(jù):
Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
檢測數(shù)據(jù):
sunny,hot,high,weak
結果:
Yes=》 0.007039
No=》 0.027418
于是使用Java代碼調用Mahout的工具類實現(xiàn)分類。
基本思想:
1. 構造分類數(shù)據(jù)。
2. 使用Mahout工具類進行訓練,得到訓練模型。
3。將要檢測數(shù)據(jù)轉換成vector數(shù)據(jù)。
4. 分類器對vector數(shù)據(jù)進行分類。
接下來貼下我的代碼實現(xiàn)=》
1. 構造分類數(shù)據(jù):
在hdfs主要創(chuàng)建一個文件夾路徑 /zhoujainfeng/playtennis/input 并將分類文件夾 no 和 yes 的數(shù)據(jù)傳到hdfs上面。
數(shù)據(jù)文件格式,如D1文件內容: Sunny Hot High Weak
2. 使用Mahout工具類進行訓練,得到訓練模型。
3。將要檢測數(shù)據(jù)轉換成vector數(shù)據(jù)。
4. 分類器對vector數(shù)據(jù)進行分類。
這三步,代碼我就一次全貼出來;主要是兩個類 PlayTennis1 和 BayesCheckData = =》
package myTesting.bayes;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;
import org.apache.mahout.text.SequenceFilesFromDirectory;
import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;
public class PlayTennis1 {
private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";
/*
* 測試代碼
*/
public static void main(String[] args) {
//將訓練數(shù)據(jù)轉換成 vector數(shù)據(jù)
makeTrainVector();
//產生訓練模型
makeModel(false);
//測試檢測數(shù)據(jù)
BayesCheckData.printResult();
}
public static void makeCheckVector(){
//將測試數(shù)據(jù)轉換成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"testinput";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失??!");
System.exit(1);
}
//將序列化文件轉換成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件轉換成向量失敗!");
System.out.println(2);
}
}
public static void makeTrainVector(){
//將測試數(shù)據(jù)轉換成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"input";
String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失??!");
System.exit(1);
}
//將序列化文件轉換成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件轉換成向量失敗!");
System.out.println(2);
}
}
public static void makeModel(boolean completelyNB){
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";
String model = WORK_DIR+Path.SEPARATOR+"model";
String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";
Path in = new Path(input);
Path out = new Path(model);
Path label = new Path(labelindex);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
if(fs.exists(label)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(label, true);
}
TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();
String[] params =null;
if(completelyNB){
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};
}else{
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};
}
ToolRunner.run(tnbj, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("生成訓練模型失??!");
System.exit(3);
}
}
}
package myTesting.bayes;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.PathFilter;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.mahout.classifier.naivebayes.BayesUtils;
import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;
import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.Vector.Element;
import org.apache.mahout.vectorizer.TFIDF;
import com.google.common.collect.ConcurrentHashMultiset;
import com.google.common.collect.Multiset;
public class BayesCheckData {
private static StandardNaiveBayesClassifier classifier;
private static Map<String, Integer> dictionary;
private static Map<Integer, Long> documentFrequency;
private static Map<Integer, String> labelIndex;
public void init(Configuration conf){
try {
String modelPath = "/zhoujianfeng/playtennis/model";
String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";
String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";
String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";
dictionary = readDictionnary(conf, new Path(dictionaryPath));
documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));
labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));
NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);
classifier = new StandardNaiveBayesClassifier(model);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("檢測數(shù)據(jù)構造成vectors初始化時報錯。。。。");
System.exit(4);
}
}
/**
* 加載字典文件,Key: TermValue; Value:TermID
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {
Map<String, Integer> dictionnary = new HashMap<String, Integer>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
String name = path.getName();
return name.startsWith("dictionary.file");
}
};
for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {
dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());
}
return dictionnary;
}
/**
* 加載df-count目錄下TermDoc頻率文件,Key: TermID; Value:DocFreq
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {
Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
return path.getName().startsWith("part-r");
}
};
for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {
documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());
}
return documentFrequency;
}
public static String getCheckResult(){
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String classify = "NaN";
BayesCheckData cdv = new BayesCheckData();
cdv.init(conf);
System.out.println("init done...............");
Vector vector = new RandomAccessSparseVector(10000);
TFIDF tfidf = new TFIDF();
//sunny,hot,high,weak
Multiset<String> words = ConcurrentHashMultiset.create();
words.add("sunny",1);
words.add("hot",1);
words.add("high",1);
words.add("weak",1);
int documentCount = documentFrequency.get(-1).intValue(); // key=-1時表示總文檔數(shù)
for (Multiset.Entry<String> entry : words.entrySet()) {
String word = entry.getElement();
int count = entry.getCount();
Integer wordId = dictionary.get(word); // 需要從dictionary.file-0文件(tf-vector)下得到wordID,
if (StringUtils.isEmpty(wordId.toString())){
continue;
}
if (documentFrequency.get(wordId) == null){
continue;
}
Long freq = documentFrequency.get(wordId);
double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);
vector.setQuick(wordId, tfIdfValue);
}
// 利用貝葉斯算法開始分類,并提取得分最好的分類label
Vector resultVector = classifier.classifyFull(vector);
double bestScore = -Double.MAX_VALUE;
int bestCategoryId = -1;
for(Element element: resultVector.all()) {
int categoryId = element.index();
double score = element.get();
System.out.println("categoryId:"+categoryId+" score:"+score);
if (score > bestScore) {
bestScore = score;
bestCategoryId = categoryId;
}
}
classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";
return classify;
}
public static void printResult(){
System.out.println("檢測所屬類別是:"+getCheckResult());
}
}
1. 請介紹一下WebGIS的概念和作用,以及在實際應用中的優(yōu)勢和挑戰(zhàn)。
WebGIS是一種基于Web技術的地理信息系統(tǒng),通過將地理數(shù)據(jù)和功能以可視化的方式呈現(xiàn)在Web瀏覽器中,實現(xiàn)地理空間數(shù)據(jù)的共享和分析。它可以用于地圖瀏覽、空間查詢、地理分析等多種應用場景。WebGIS的優(yōu)勢包括易于訪問、跨平臺、實時更新、可定制性強等,但也面臨著數(shù)據(jù)安全性、性能優(yōu)化、用戶體驗等挑戰(zhàn)。
2. 請談談您在WebGIS開發(fā)方面的經(jīng)驗和技能。
我在WebGIS開發(fā)方面有豐富的經(jīng)驗和技能。我熟悉常用的WebGIS開發(fā)框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能夠使用HTML、CSS和JavaScript等前端技術進行地圖展示和交互設計,并能夠使用后端技術如Python、Java等進行地理數(shù)據(jù)處理和分析。我還具備數(shù)據(jù)庫管理和地理空間數(shù)據(jù)建模的能力,能夠設計和優(yōu)化WebGIS系統(tǒng)的架構。
3. 請描述一下您在以往項目中使用WebGIS解決的具體問題和取得的成果。
在以往的項目中,我使用WebGIS解決了許多具體問題并取得了顯著的成果。例如,在一次城市規(guī)劃項目中,我開發(fā)了一個基于WebGIS的交通流量分析系統(tǒng),幫助規(guī)劃師們評估不同交通方案的效果。另外,在一次環(huán)境監(jiān)測項目中,我使用WebGIS技術實現(xiàn)了實時的空氣質量監(jiān)測和預警系統(tǒng),提供了準確的空氣質量數(shù)據(jù)和可視化的分析結果,幫助政府和公眾做出相應的決策。
4. 請談談您對WebGIS未來發(fā)展的看法和期望。
我認為WebGIS在未來會繼續(xù)發(fā)展壯大。隨著云計算、大數(shù)據(jù)和人工智能等技術的不斷進步,WebGIS將能夠處理更大規(guī)模的地理數(shù)據(jù)、提供更豐富的地理分析功能,并與其他領域的技術進行深度融合。我期望未來的WebGIS能夠更加智能化、個性化,為用戶提供更好的地理信息服務,助力各行各業(yè)的決策和發(fā)展。
這塊您需要了解下stm32等單片機的基本編程和簡單的硬件設計,最好能夠了解模電和數(shù)電相關的知識更好,還有能夠會做操作系統(tǒng),簡單的有ucos,freeRTOS等等。最好能夠使用PCB畫圖軟件以及keil4等軟件。希望對您能夠有用。
1.負責區(qū)域大客戶/行業(yè)客戶管理系統(tǒng)銷售拓展工作,并完成銷售流程;
2.維護關鍵客戶關系,與客戶決策者保持良好的溝通;
3.管理并帶領團隊完成完成年度銷售任務。
你好,面試題類型有很多,以下是一些常見的類型:
1. 技術面試題:考察候選人技術能力和經(jīng)驗。
2. 行為面試題:考察候選人在過去的工作或生活中的行為表現(xiàn),以預測其未來的表現(xiàn)。
3. 情境面試題:考察候選人在未知情境下的決策能力和解決問題的能力。
4. 案例面試題:考察候選人解決實際問題的能力,模擬真實工作場景。
5. 邏輯推理題:考察候選人的邏輯思維能力和分析能力。
6. 開放性面試題:考察候選人的個性、價值觀以及溝通能力。
7. 挑戰(zhàn)性面試題:考察候選人的應變能力和創(chuàng)造力,通常是一些非常具有挑戰(zhàn)性的問題。
需要具體分析 因為cocoscreator是一款游戲引擎,面試時的問題會涉及到不同的方面,如開發(fā)經(jīng)驗、游戲設計、圖形學等等,具體要求也會因公司或崗位而異,所以需要根據(jù)實際情況進行具體分析。 如果是針對開發(fā)經(jīng)驗的問題,可能會考察候選人是否熟悉cocoscreator常用API,是否能夠獨立開發(fā)小型游戲等等;如果是針對游戲設計的問題,則需要考察候選人對游戲玩法、關卡設計等等方面的理解和能力。因此,需要具體分析才能得出準確的回答。